
26 The Delphi Magazine Issue 55

Beating The System:
Wrapping The
RAS Services API
by Dave Jewell

Having spent the last two or
three months writing a com-

ponent that encapsulates some of
the Windows file system, this
month and next I’m going to con-
centrate on the development of a
couple of non-visual components
that ‘wrap’ the RAS (Remote
Access Service) API routines pro-
vided by Windows. Amongst other
things, this will allow us to pro-
grammatically add new entries to
the Windows phonebook and mon-
itor the state of current connec-
tions. In fact, the extended RAS API
routines under Windows 2000 will
even allow us to acquire connec-
tion statistics.

That said, this month’s column
is largely a tutorial on how to wrap
an API set as a Delphi object,
without getting any unpleasant
surprises when moving to other
platforms, and showing how to fail
gracefully if the required API does
not exist. In other words, how not

to blow up with a GPF if a DLL isn’t
found. This is especially important
when creating software that’s got
to run on Windows 95, 98, NT, 2000
and so on. Nobody wants to strew
their code with dozens of messy ‘if
this then that’ statements accord-
ing to the Windows platform you’re
currently running on. Sadly, we
can’t avoid a certain amount of
messiness inside our RAS compo-
nents, but at least we can do a rea-
sonable job of hiding it from the
application program.

But First, What’s RAS?
If you look up RAS in the MSDN
documentation, it will tell you that
the ‘Remote Access Service lets
users at remote locations work as if
connected directly to a computer
network, accessing one or more RAS
servers’, which is more than a little
vague. A better definition would be
to say that the RAS API provides us
with a way to programmatically
access the DUN (Dial-Up Networ-
king) system, providing direct
access to the various defined con-
nections (also called phonebook
entries) and enabling us to dial out,
hang up, add and delete entries
and many other wonderful things.

To put this in concrete terms,
click on the Settings... button
(Figure 1) next time you see this
dialog and you’ll see the Connec-
tions tab of the Internet Prop-
erties dialog (Figure 2). The RAS
API allows us to programmatically
add, remove and edit the various
phone book entries, just as the end
user can do from this dialog.

It’s rather surprising, given that
the RAS API has been around for
quite a while, that there aren’t any
RAS wrapper components in
Delphi 5. You won’t even find the
API-level definitions amongst the

contents of \DELPHI5\SOURCE\
RTL\WIN. Perhaps Borland thought
the API was too convoluted to be
worth bothering with. I thought
that too, from time to time, but
decided to plough on regardless!

The RAS components I’ve devel-
oped are all derived from a
common ancestor called TRASBase-
Component, the source code for
which is shown in Listing 1. I did
things like this because there’s a
small amount of code that’s
needed whatever RAS services
you’re using, and it makes sense to
centralise this in one place. As you
can see from the code, TRASBase-
Component attempts to load two
DLLs, the first of which is
RASAPI32.DLL. Under Windows 95,
98, NT 4.0 and Windows 2000, this
DLL contains most of the RAS API
routines that are available to appli-
cations... but not necessarily all! At
some point, Microsoft decided to
add some more RAS API calls and,
rather than adding them to a new
release of RASAPI32.DLL, they
stuffed them into another DLL
called RNAPH.DLL. Later, they did
add the new routines to a subse-
quent release of RASAPI32.DLL, thus
rendering RNAPH.DLL obsolete. So
(if Microsoft’s documentation can
be believed) some early versions
of Windows might not have this

➤ Figure 1: From where does this
familiar dialog get its list of
RAS services, usernames and
passwords? All is revealed!

➤ Figure 2: With a good grasp of
the RAS API and a set of
Delphi components to wrap
up all Microsoft's run-away
complexity, you can design
your own custom editors for
phonebook entries.

➤ Listing 1: Facing page.

March 2000 The Delphi Magazine 27

unit RASControls;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs;

type
TRasDialParams = record
dwSize: Integer;
EntryName: array [0..256] of Char;
PhoneNumber: array [0..128] of Char;
CallbackNumber: array [0..128] of Char;
UserName: array [0..256] of Char;
Password: array [0..256] of Char;
Domain: array [0..15] of Char;

end;
TRasDialParamsNT4_2000 = record
dwSize: Integer;
EntryName: array [0..256] of Char;
PhoneNumber: array [0..128] of Char;
CallbackNumber: array [0..128] of Char;
UserName: array [0..256] of Char;
Password: array [0..256] of Char;
Domain: array [0..15] of Char;
SubEntry: Integer;
CallbackId: Integer;

end;
TRasEntry = record
dwSize, Options: Integer; // General stuff
CountryID, CountryCode: Integer; // Phone/Country info
AreaCode: array [0..10] of Char;
LocalPhoneNumber: array [0..128] of Char;
AlternateOffset: Integer;
ipaddr, ipaddrDns, ipaddrDnsAlt,
ipaddrWins, ipaddrWinsAlt: Integer; // PPP/Ip

FrameSize, NetProtocols,
FramingProtocol: Integer; // Framing

Script: array [0..Max_Path-1] of Char; // Scripting
AutodialDll: array [0..Max_Path-1] of Char; // AutoDial
AutodialFunc: array [0..Max_Path - 1] of Char;
DeviceType: array [0..16] of Char; // Device
DeviceName: array [0..128] of Char;
X25PadType: array [0..32] of Char; // X.25
X25Address: array [0..200] of Char;
X25Facilities: array [0..200] of Char;
X25UserData: array [0..200] of Char;
Channels: Integer;
Reserved1, Reserved2: Integer;

end;
TRASBaseComponent = class (TComponent)
private
fErrorText: String;
fError: Integer;
fOnError: TNotifyEvent;
fRasLib, fRasExtensionsLib: THandle;
fWin2000, fWinNT4, fAvailable, fDummy1: Boolean;
function GetProc (ProcName: PChar): Pointer;
function CallProc (Err: Integer): Boolean;

public
constructor Create (AOwner: TComponent); override;
destructor Destroy; override;
property ErrorText: String read fErrorText;
property Error: Integer read fError;

published
property Available: Boolean read fAvailable
write fDummy1 stored False;

property OnError: TNotifyEvent read fOnError
write fOnError;

end;
TRASPhoneBookManager = class(TRASBaseComponent)
private
fItemIndex: Integer;
fEntries, fDummy2: TStrings;
fPhoneBookFileName, fDummy3: String;
procedure SetItemIndex (Value: Integer);
function PhoneBookNameAsPChar: PChar;
procedure SetPhoneBookFileName (const Value: String);
function GetDialParameters (Index: Integer): String;
function GetEntryProperties (Index: Integer): String;
function InternalGetDialParameters(
var Dest: TRasDialParamsNT4_2000;
var GotPassword: Bool): Integer;

function InternalGetEntryProperties(
var Dest: TRASEntry): Boolean;

protected
public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
function Add: Boolean;
function Delete: Boolean;
function Edit: Boolean;
function Rename(const NewName: String): Boolean;
function ValidateEntryName(const EntryName: String):
Boolean;

procedure Refresh;
published
property ItemIndex: Integer read fItemIndex
write SetItemIndex stored False;

property PhoneBookFileName: String
read fPhoneBookFileName write SetPhoneBookFileName;

property Entries: TStrings read fEntries
write fDummy2 stored False;

property UserName: String index 0 read GetDialParameters
write fDummy3 stored False;

property Password: String index 1
read GetDialParameters write fDummy3 stored False;

property PhoneNumber: String index 0
read GetEntryProperties write fDummy3 stored False;

property DeviceType: String index 1
read GetEntryProperties write fDummy3 stored False;

property DeviceName: String index 2
read GetEntryProperties write fDummy3 stored False;

end;
procedure Register;
implementation
constructor TRASBaseComponent.Create (AOwner: TComponent);
begin
Inherited Create (AOwner);
fRasLib := LoadLibrary ('rasapi32.dll');
fRasExtensionsLib := LoadLibrary ('rnaph.dll');
fAvailable := fRasLib <> 0;
fWin2000 := (Win32Platform = Ver_Platform_Win32_NT) and
(Win32MajorVersion >= 5);

fWinNT4 := (Win32Platform = Ver_Platform_Win32_NT) and
(Win32MajorVersion = 4);

end;
destructor TRASBaseComponent.Destroy;
begin
if fRasLib <> 0 then FreeLibrary(fRasLib);
if fRasExtensionsLib <> 0 then
FreeLibrary(fRasExtensionsLib);

Inherited;
end;
function TRASBaseComponent.GetProc(ProcName: PChar):
Pointer;

begin
Result := Nil;
if fAvailable then begin
Result := GetProcAddress (fRasLib, ProcName);
if (Result = Nil) and (fRasExtensionsLib <> 0) then
Result := GetProcAddress(fRasExtensionsLib,ProcName);

end;
end;
function TRASBaseComponent.CallProc(Err: Integer): Boolean;
var
szErr: array [0..1024] of Char;
RasGetErrorString: function(Err: Integer; Buff: PChar;

BuffSize: Integer): Integer; stdcall;
begin
fError := Err;
Result := Err = 0;
if Result then fErrorText := ''
else begin
RasGetErrorString := GetProc ('RasGetErrorStringA');
if RasGetErrorString(Err, szErr, sizeof(szErr))=0 then
fErrorText := szErr

else begin
fErrorText := SysErrorMessage (Err);
if fErrorText = '' then
fErrorText := Format ('Unknown error (%d)', [Err]);

end;
fErrorText := 'RAS: ' + fErrorText;
if Assigned(fOnError) then fOnError(Self);

end;
end;
constructor TRASPhoneBookManager.Create(
AOwner: TComponent);

begin
Inherited Create (AOwner);
fEntries := TStringList.Create;
Refresh;

end;
destructor TRASPhoneBookManager.Destroy;
begin
fEntries.Free;
Inherited;

end;
procedure TRASPhoneBookManager.SetPhoneBookFileName(
const Value: String);

begin
if (fPhoneBookFileName <> Value)
and FileExists (Value) then begin
fPhoneBookFileName := Value;
Refresh;

end;
end;
function TRASPhoneBookManager.PhoneBookNameAsPChar: PChar;
begin
if fPhoneBookFileName = '' then Result := Nil
else Result := PChar(fPhoneBookFileName);

end;
procedure TRASPhoneBookManager.Refresh;
type
TRasEntryName = record
dwSize: Integer;
szEntryName: array [0..257] of Char;

end;
TRasEntryName2000 = record
dwSize: Integer;
szEntryName: array [0..257] of Char;
dwFlags: Integer;
szPhonebookPath: array [0..Max_Path] of Char;

end;

28 The Delphi Magazine Issue 55

var
CurEntry, Buffer: PChar;
Idx, BufSize, NumEntries, EntrySize: Integer;
RasEnumEntries: function(Reserved,Phonebook,Buffer: PChar;
var BufSize,NumEntries: Integer): Integer; stdcall;

begin
if fAvailable then begin
fEntries.Clear;
RasEnumEntries := GetProc('RasEnumEntriesA');
EntrySize := sizeof (TRasEntryName);
if fWin2000 then EntrySize := sizeof(TRasEntryName2000);
Idx := EntrySize;
BufSize := sizeof (Idx);
RasEnumEntries(Nil, PhoneBookNameAsPChar, @Idx,
BufSize, NumEntries);

Buffer := AllocMem (BufSize);
try
PInteger (Buffer)^ := EntrySize;
if CallProc (RasEnumEntries (Nil, PhoneBookNameAsPChar,
Buffer, BufSize, NumEntries)) then begin
CurEntry := Buffer;
for Idx := 0 to NumEntries - 1 do begin
fEntries.Add (CurEntry + sizeof (Integer));
Inc (CurEntry, EntrySize);

end;
end;
finally
FreeMem (Buffer);
if fEntries.Count > 0 then fItemIndex := 0
else fItemIndex := -1;

end;
end;

end;
procedure TRASPhoneBookManager.SetItemIndex(
Value: Integer);

begin
if (Value >= 0) and (Value < fEntries.Count) and
(fEntries.Count > 0) then
fItemIndex := Value;

end;
function TRASPhoneBookManager.Add: Boolean;
var
RasCreatePhoneBookEntry: function(WndParent: hWnd;
Phonebook: PChar): Integer; stdcall;

begin
Result := False;
if fAvailable then begin
RasCreatePhoneBookEntry :=
GetProc('RasCreatePhonebookEntryA');

if Assigned (RasCreatePhoneBookEntry) then
Result := CallProc(RasCreatePhoneBookEntry(
Application.Handle, PhoneBookNameAsPChar));

if Result then Refresh;
end;

end;
function TRASPhoneBookManager.Delete: Boolean;
var
RasDeleteEntry: function(Phonebook, EntryName: PChar):
Integer; stdcall;

begin
Result := False;
if fAvailable and (fItemIndex >= 0) then begin
RasDeleteEntry := GetProc ('RasDeleteEntryA');
if Assigned (RasDeleteEntry) then

Result := CallProc(RasDeleteEntry(
PhoneBookNameAsPChar,
PChar(fEntries[fItemIndex])));

if Result then Refresh;
end;

end;
function TRASPhoneBookManager.Edit: Boolean;
var
RasEditPhonebookEntry: function(WndParent: hWnd;
Phonebook, EntryName: PChar): Integer; stdcall;

begin
Result := False;
if fAvailable and (fItemIndex >= 0) then begin
RasEditPhonebookEntry :=
GetProc('RasEditPhonebookEntryA');

if Assigned (RasEditPhonebookEntry) then
Result := CallProc(RasEditPhonebookEntry(
Application.Handle, PhoneBookNameAsPChar,
PChar(fEntries [fItemIndex])));

if Result then Refresh;
end;

end;
function TRASPhoneBookManager.ValidateEntryName(
const EntryName: String): Boolean;

var
RasValidateEntryName: function(Phonebook, EntryName:

PChar): Integer; stdcall;
begin
Result := False;
if fAvailable then begin
RasValidateEntryName :=
GetProc('RasValidateEntryNameA');

if Assigned (RasValidateEntryName) then
Result := CallProc (RasValidateEntryName(
PhoneBookNameAsPChar, PChar (EntryName)));

end;
end;

function TRASPhoneBookManager.Rename(
const NewName: String): Boolean;

var
RasRenameEntry: function(Phonebook, OldName, NewName:

PChar): Integer; stdcall;
begin
Result := False;
if fAvailable and (fItemIndex >= 0) and

ValidateEntryName(NewName) then begin
RasRenameEntry := GetProc('RasRenameEntryA');
if Assigned (RasRenameEntry) then
Result := CallProc(RasRenameEntry(
PhoneBookNameAsPChar, PChar(fEntries[fItemIndex]),
PChar(NewName)));

if Result then Refresh;
end;

end;
function TRASPhoneBookManager.InternalGetDialParameters(
var Dest: TRasDialParamsNT4_2000; var GotPassword: Bool):
Integer;

var
RasGetEntryDialParams: function(Phonebook: PChar;
var RasDialParams: TRasDialParamsNT4_2000;
var GotPassword: Bool): Integer; stdcall;

begin
Result := 0;
if fAvailable and (fItemIndex >= 0) then begin
RasGetEntryDialParams :=
GetProc('RasGetEntryDialParamsA');

if Assigned (RasGetEntryDialParams) then begin
if fWin2000 or fWinNT4 then
Dest.dwSize := sizeof(TRasDialParamsNT4_2000)

else
Dest.dwSize := sizeof (TRasDialParams);

StrPCopy(Dest.EntryName, fEntries[fItemIndex]);
if CallProc(RasGetEntryDialParams(
PhoneBookNameAsPChar, Dest, GotPassword)) then
Result := Dest.dwSize;

end;
end;

end;
function TRASPhoneBookManager.GetDialParameters(
Index: Integer): String;

var
GotPassword: Bool;
Params: TRasDialParamsNT4_2000;

begin
if InternalGetDialParameters(Params,GotPassword) > 0
then begin
if not GotPassword then
Params.Password := '---not available----';

case Index of
0 : Result := Params.UserName;
1 : Result := Params.Password;

end;
end;

end;
function TRASPhoneBookManager.InternalGetEntryProperties(
var Dest: TRASEntry): Boolean;

var
EntrySize, DevInfoSize: Integer;
Buffer: array [0..10000] of Char;
RasGetEntryProperties: function(Phonebook, EntryName:
PChar; var Entry; var EntrySize: Integer; DevInfo:
Pointer; var DevInfoSize: Integer): Integer; stdcall;

begin
Result := False;
if fAvailable and (fItemIndex >= 0) then begin
RasGetEntryProperties :=
GetProc('RasGetEntryPropertiesA');

if Assigned (RasGetEntryProperties) then begin
PInteger(@Buffer)^ := sizeof(TRASEntry);
EntrySize := sizeof(Buffer);
DevInfoSize := 0;
Result := CallProc(RasGetEntryProperties(
PhoneBookNameAsPChar, PChar(fEntries[fItemIndex]),
Buffer, EntrySize, Nil, DevInfoSize));

if Result then
Move (Buffer, Dest, sizeof(TRASEntry));

end;
end;

end;
function TRASPhoneBookManager.GetEntryProperties(
Index: Integer): String;

var Props: TRASEntry;
begin
if InternalGetEntryProperties (Props) then begin
case Index of
0 : Result := Props.LocalPhoneNumber;
1 : Result := Props.DeviceType;
2 : Result := Props.DeviceName;

end;
end;

end;
procedure Register;
begin
RegisterComponents('DelphiMag', [TRASPhoneBookManager]);

end;
end.

March 2000 The Delphi Magazine 29

supplementary DLL at all, whereas
more recent versions might. I’ve
discovered RNAPH.DLL on my Win-
dows 98 (First Release) system, but
it doesn’t exist on Windows 2000.

So what’s the best way out of this
nightmare? Given a particular API
call, how do we track it down? I
decided the simplest approach
was to check RASAPI32.DLL first and
only check RNAPH.DLL if the rou-
tine doesn’t exist in the first
library. That way, things should
work properly on systems that
don’t require the extra DLL, and on
systems that do.

You can see how this works out
in the TRASBaseComponent.GetProc
routine. Given an API routine
name, it first checks the main API
library, and only checks the sec-
ondary library if necessary. The
destructor for TRASBaseComponent
automatically ensures that the
libraries are unloaded when the
component is destroyed, and the
constructor also takes care of set-
ting up a Boolean property, Avail-
able, which indicates whether or
not RAS services are available.
This read-only property uses a
dummy write member to fool the
property inspector into displaying
it. Notice the property is defined
with the stored false attribute,
because it doesn’t make sense for
it to be persistent. There are also
two internal flags, fWin2000 and
fWinNT4, which are needed in vari-
ous places to cope with certain
platform-specifics.

The final job of TRASBase-
Component is to provide a central-
ised place for error handling.
Whenever one of the RAS API rou-
tines is called, the function result is
passed to the CallProc method. If
the error code was zero, then this
sets the public property ErrorText
to an empty string. If a non-zero

error code was returned, the code
uses the RasGetErrorString to
translate the RAS error code into
something that’s human readable,
and places the result in ErrorText.
In addition, we maintain another
property, Error, for clients who’d
prefer to see the original error
code. Finally, there’s an OnError
event handler which is invoked
whenever something goes wrong.

Fun With Phonebooks.
I’ve nothing else to say about
TRASBaseComponent, so let’s turn to
something a bit more interesting.
As my first foray into RAS API
twiddling, I decided to write a
component that encapsulates
access to the phonebook, called
TRASPhoneBookManager. As I indi-
cated earlier, the list of available
connections are stored in what
Microsoft call the phonebook.
Under Windows 95 and 98, this is
actually a part of the system regis-
try, but under NT (including Win-
dows 2000) the phonebook is a
separate disk file with the exten-
sion .PBK. Just to make things even
more fun, NT supports multiple
phonebooks.

Fortunately, it’s easy to cater for
all this. If you look at the code for
TRASPhoneBookManager, you’ll see
there’s a String property called
PhoneBookFileName. This will be set
to an empty string by default,
which is just what we want for W9x,
since it will be inter-
preted as a refer-
ence to the registry-
based default phone
book. If you set this
string to point to a
valid .PBK file under
NT, that phone-
book will be used
instead. If you spec-
ify an empty string
under NT, then the
default phonebook
will be used.

This raises an interesting little
subtlety. If you look at the various
phonebook-related RAS API func-
tions, you’ll see they all take a
PChar parameter which identifies
the phonebook to use. The API
documentation states that you
should pass NIL to invoke the
default behaviour. However, what
happens if you pass PChar(Str) to
an API routine where Str is an
empty string? Does NIL get passed?
The answer is no, it doesn’t! What
gets passed is a pointer to a zero
byte. I experimented with this
under Windows 98 and discovered
that the various phonebook rou-
tines were happy to accept a
pointer to an empty string. In fact,
when I peeked at the code inside
RASAPI32.DLL, I found that none of
the Windows 98 routines even
bothered to look at this parameter,
it was totally ignored. Even so, in
the interests of abiding by the
letter of the law, I added a small
routine called PhoneBookNameAs-
PChar to ensure NIL (NULL if you’re a
C++ person) gets passed when the
phonebook filename is empty.

The most important property in
this component is Entries, which
is implemented as a read-only
TStrings component containing
the number of entries in the
current phonebook (or in the
registry if you’re not running NT).
This stringlist is set up by the code
inside the Refreshmethod which is

➤ Figure 3: The Make New
Connection wizard is what
appears when you invoke the
RasCreatePhoneBookEntry API
call. The various RAS-related
dialogs are implemented in
the undocumented RNAUI.DLL.

➤ Figure 4: Under Windows 95
and 98, there's only one RAS
phonebook, occupying a
specific place in the Windows
registry. As you can see here,
I have three different ISP
services currently installed.

30 The Delphi Magazine Issue 55

called from the component’s con-
structor. I’ve also made the Refresh
method public so the application
can refresh the phonebook entries
from time to time, to ensure it’s got
the current state of play.

If you’re running NT 3.51, or an
early version of NT 4.0, then don’t
be too zealous in calling Refresh!
This is because the Refresh func-
tion has to call RASEnumEntries, a
RAS API routine which was notori-
ous for leaking memory in early
implementations. Microsoft have
fixed the problem now, but if you
expect your code to run on an
antique version of NT, then call
Refresh judiciously!

At the same time, there’s an
ItemIndex property which is used
to refer to a specific item within the
phonebook. Be careful to set it to
the appropriate item, especially
before calling the Delete method!

The Refresh routine is necessar-
ily rather involved, mainly to cope
with the brain-dead API routine
that it’s calling. Despite the name,
the RASEnumEntries routine doesn’t
give you phonebook entries one at
a time, it gives you the whole lot in
one go. Ordinarily, it wouldn’t be
too much trouble stepping
through the memory buffer and
accessing the information, but
Microsoft have thoughtfully
increased the size of individual
entries in Windows 2000!

You can see what I mean by con-
sulting the listing. Prior to Win-
dows 2000, a phonebook entry
name record consisted of only two
fields (see TRasEntryName), a record
size specifier followed by a charac-
ter array containing the actual
entry name. With the advent of
Windows 2000, a couple of new

fields got tacked onto the record in
order to specify flags (system-wide
or per-user) for each phonebook
entry and to return the full
pathname of the .PBK file for that
specific entry. (see TRasEntry-
Name2000).

This means that, prior to calling
RASEnumEntries, you’ve got to
figure out what size data structure
you’re dealing with; this is why we
set up the fWin2000 field in the
ancestor component. Another, er,
interesting aspect of the RASEnum-
Entries routine is that you don’t
know how big to make the buffer to
receive the array of records. The
best solution is to deliberately give
the routine a buffer which is far too
small, whereupon it will grudgingly
tell you how big it wants the buffer
to be. Yes folks, as API routines go,
RASEnumEntries is about as friendly
as a cornered rat.

Once you’ve got these little
obstacles sorted out, the rest is
simple. The GetProc method is
called to obtain the procedure
pointer for the API call. In this case
I haven’t bothered checking to see
if we get NIL back because this rou-

tine was implemented
way back in NT 3.1! The
fEntries stringlist is

cleared and EntrySize is calculated
according to the record size we’re
working with. After making a
dummy call to get the required
buffer size, the requisite amount of
memory is allocated and the real
call is made. The code then simply
steps through the array, incre-
menting by EntrySize each time
round the loop in order to access
successive records.

The RasCreatePhonebookEntry
routine is used to create a new
phonebook entry. Well, sort of. All
it actually does is call the built-in
‘Make New Connection’ wizard,
which you can see running in
Figure 3. It’s rather a shame that
there is no API to directly add the
information into the registry or
current phonebook. At least, not
officially, but maybe this is some-
thing we’ll look at in a future
instalment (see RAS API Secrets).
I wrapped the call RasCreate-
PhonebookEntry with the much
easier to use Add method: look Ma,
no parameters! Like the various
other methods discussed here, it
returns Trueon success or Falseon
failure. If it fails, an application can
consult Error and ErrorText to get
the low-down on what went wrong.
The only thing worthy of note in
the Add routine is the use of Appli-
cation.Handle as a sneaky way of
providing a parent window handle.

function Remote_CreateEntry (hWndParent: hWnd): Integer;
stdcall; external 'rnaui.dll';
function Remote_EditEntry (hWndParent: hWnd; EntryName: PChar): Integer;
stdcall; external 'rnaui.dll';

➤ Below: Listing 3

➤ Listing 4

property UserName: String index 0
read GetDialParameters
write fDummy3 stored False;

property Password: String index 1
read GetDialParameters
write fDummy3 stored False;

➤ Figure 5: Why use
one DLL when half
a dozen will do?
Microsoft show
once again that
the KISS principle
of software
engineering is an
alien concept in
Redmond.

➤ Above: Listing 2

typedef struct _RASDIALPARAMS {
DWORD dwSize;
TCHAR szEntryName[RAS_MaxEntryName + 1];
TCHAR szPhoneNumber[RAS_MaxPhoneNumber + 1];
TCHAR szCallbackNumber[RAS_MaxCallbackNumber + 1];
TCHAR szUserName[UNLEN + 1];
TCHAR szPassword[PWLEN + 1];
TCHAR szDomain[DNLEN + 1] ;

#if (WINVER >= 0x401)
DWORD dwSubEntry;
DWORD dwCallbackId;

#endif
} RASDIALPARAMS;

32 The Delphi Magazine Issue 55

Like most of Microsoft’s routines
which display a dialog, you need to
provide a parent window. I got
the Application.Handle trick from
DIALOGS.PAS.

My implementation of the Delete
and Edit methods follows exactly
the same pattern. They each work
with the current value of ItemIndex,
which forms an index into the
Entries property, thus identifying
the phonebook entry to be deleted
or edited. The code checks that
ItemIndex is within range, and then
invokes GetProc to retrieve the
appropriate API pointer from the
RAS DLL. In both cases CallProc is
used to set the error status infor-
mation and call OnError if the event
handler has been assigned. As with
RasCreatePhonebookEntry, the Ras-
EditPhonebookEntry routine brings
up the appropriate dialog box from
RNAUI.DLL.

For the terminally curious, and
those who like living dangerously,
the undocumented dialog routines

in RNAUI.DLL can easily be called
directly without recourse to
RASAPI32.DLL (see Listing 2). Well,
I’m sure you get the idea!

The RAS API also implements a
routine called RasRenameEntry
which allows an existing phone-
book entry to be renamed. As
shown in the listing, I wrapped this
up into an easily callable method:
Rename. While doing so, I noticed
the documentation mentions the
presence of another routine called
RasValidateEntryName, so I added
support for this too, ensuring the
new connection name passed to
Rename goes through my Validate-
EntryName code first. In practice, I
don’t think that ValidateEntryName
does very much, but one may as
well play ball.

Delving Deeper
OK, so we can add, delete and
rename phonebook entries, but
what about the actual business of
phone numbers, usernames and

(shhh...) passwords? In order to
retrieve password and username
information for a specific connec-
tion, we have to use the snappily-
named RasGetEntryDialParams rou-
tine. Microsoft are now officially
deprecating the use of this routine,
telling us that we need to move
over to the more recent RasGet-
Credentials. Well, thanks very
much Microsoft, but have you
noticed that you didn’t bother to
implement this routine under
Windows 95/98? I’ll take my
chances and stick with RasGet-
EntryDialParams for now. By the
time Microsoft carry out their
threat of removing RasGetEntry-
DialParams from the RAS API, the
Windows 9x product line will no
doubt be history... maybe.

RasGetEntryDialParams takes a
pointer to a data structure which
(in C/C++ terms) looks like Listing
3. As you can see, we’re faced with
the same problem we encountered
with RasEnumEntries: the data stru-
cture used is operating system ver-
sion dependent. For NT 4.0 and
Windows 2000, the last two fields
exist, whereas for other platforms
they don’t. The dwSize field has to
be set up prior to calling RasGet-
EntryDialParams, and you also have
to set up the szEntryName field with
the name of the required entry.
The call will then fill in the other
fields of the data structure. Some-
what counter-intuitively, we can’t
use this routine to retrieve the
phone number, even though there
is a szPhoneNumber field in the struc-
ture. For that, we need another
routine called RasGetEntryPrope-
rties. More on that in a moment.

As you can see from the code,
TRASPhoneBookManager implements
a couple of string properties, like
those shown in Listing 4.

As you change the ItemIndex
property, you’ll see the UserName
and Password properties change in
the object inspector: deeply cool.
Yes, I’m a great one for making
properties ‘inspectable’ if at all
possible (ie published properties
which pretend to be read/write so
that the object inspector will deign
to display them) and, to this end,
I’ve used another dummy variable,
fDummy3 as the write clause. Can

RAS API Secrets: To Boldly Go...
Microsoft’s RAS API is a delightfully baroque collection of DLLs, registry
entries and (in the case of NT) file-based phonebooks. Personally, I’m the sort
of guy who would rather cut through the multiple layers of Microsoft code
and get right down to ‘hitting the metal’. Not only will this make your appli-
cation a lot faster and less dependent on Microsoft DLLs, but arguably a lot
more reliable too J. That said, it should be obvious that riding rough-shod
over the official APIs might buy you ultimate flexibility, but perhaps ultimate
disaster if the underlying implementation ever changes.

If you do want to venture into the unknown, consider the simple process of
programmatically creating a new phonebook entry. As indicated elsewhere,
the RasCreatePhonebookEntry API call simply invokes the new connection
wizard. The RasCreatePhonebookEntry code does this by loading the undocu-
mented RNAUI.DLL which contains much of the user interface code involved.
This in turn is responsible for making persistent registry changes (on Windows
95/98) according to whatever’s typed into the various dialogs. If you consult
Figure 4, you’ll see the registry sub-tree at HKEY_CURRENT_USER\Remote-
Access. If you want to create a new, empty phonebook entry, just try adding a
string value (eg ‘Wombat’) to the Addresses key and, hey presto, you’ll find
that if you then open the Dial-Up Networking folder under My Computer,
Wombat will magically appear. Of course, there’s a lot more than this to do in
order to get a valid phonebook entry, I’m simply making the point that, ulti-
mately, it all comes down to registry manipulation under Windows 95/98.

Under NT 4.0 and Windows 2000, phonebook entries reside in disk files.
Interestingly, there are a whole slew of undocumented routines inside the
Windows 2000 version of RASAPI32.DLL which relate to manipulation of these
.PBK files, 23 of them no less! With names like RasFileLoad, RasfileGet-
SectionName, RasFileWrite, etc, it’s obvious that these are the low-level
manipulation routines for NT phonebooks. Hmmm... GetSectionName sounds
an awful lot like an .INI file, doesn’t it? Surely not? Oh yes! No prizes for guess-
ing what the inside of a .PBK file looks like J.

34 The Delphi Magazine Issue 55

anyone explain to me why this is
OK, even though both UserName and
Password are indexed properties? I
expected to have to provide a
dummy ‘writer’ routine, which
takes an index value and string as
parameters, but the Delphi 3 com-
piler accepts this construction
without comment. Either it’s smart
enough to realise that I only want
to use indexing to read the
property, or too dim to spot my
misdemeanour, I’m not sure which!
Anyway, it works. Then again, I’ve
only tested this code with Delphi 3
so far: your mileage may vary.

The GetDialParameters code is
relatively straightforward because
most of the work is done in a helper
routine called InternalGetDial-
Parameters. It takes an index value
and returns the appropriate string
after retrieving a valid parameter
block. One wrinkle is that, depend-
ing on security considerations, etc,
you may or may not be able to
retrieve the password of a specific
account, and if the code detects
that no password was retrieved,
then the Password property is set to
—-not available—— by default.

Yes, Dave, but what about get-
ting the phone number? As I men-
tioned, we need another routine
called RasGetEntryProperties to get
the phone number of a particular
phonebook entry. The bad news is
that this routine requires an abso-
lutely horrendous data structure,
TRasEntry, which you’ll find near
the beginning of the listing.

I hope that this isn’t the case, but
one or two readers might feel dis-
posed to berate me for getting rid
of all Microsoft’s symbolic con-
stants in the various structures
presented in this article. Why have
I replaced RAS_MaxAreaCode with 10,
RAS_MaxPhoneNumber with 128, and
so on. Well, for starters, I think that
the RAS API is quite complex
enough already without cluttering
things up with dozens of extra con-
stants. I don’t like obfuscating my
code and I don’t anticipate that
Microsoft will change any of these
constants any time soon. In any
event the proper place for all these
constants and structure definition
is in a RAS.PAS (sounds good, that!)
file supplied by Borland. And, yes

guys, that was a big hint.
Maybe in Delphi 6?

As a final little smack in the
face from Microsoft (what, me,
bitter and twisted?), the Ras-
GetEntryProperties call can
potentially return a number of
alternative phone numbers
appended to the end of the
TRasEntry data structure. Thus,
you’ve got to be sure to allocate a
buffer big enough to cope. In this
relatively simple phonebook
implementation, I’ve ignored such
niceties as alternative phone num-
bers: after all, what I’m really trying
to do here is demonstrate how to
wrap an API set in a platform inde-
pendent manner. It’s up to you to
flesh out the bones with whatever
‘meat’ you’re most interested in, so
to speak! Nevertheless, you do
need to allocate some space after
the TRasEntry structure for those
extra phone numbers.

You can see how I’ve tackled this
in the InternalGetEntryProperties
routine. The buffer allocated is
actually 10,000 bytes long (what’s
32-bit programming for if you can’t
casually throw 10Kb on the stack?)
and any extra phone numbers will
go into this buffer after the ‘real’
TRASEntry data structure. Once the
data has been successfully read,
then we just pass back
sizeof(TRasEntry) bytes to the
caller.

Armed with the InternalGet-
EntryProperties routine, I added
three more indexed properties to
the phonebook component to
return phone number, device type
(modem, X.25, etc) and device
name associated with this entry. If
you’re interested in those other
X.25-related strings in TRasEntry, it
would be trivially simple to expose
them as properties.

Maybe you’re thinking that this
component isn’t enormously effi-
cient, because it hits the RAS API
every time Delphi reads one of
those indexed properties. Well,
that’s true, but I wanted the com-
ponent to keep in sync with the

➤ Figure 6: Here's the
phonebook manager
component as seen in the
Object Inspector.

current state of the phonebook
where possible and, besides, the
latency of these routines is pretty
low. On Windows 9x we’re merely
accessing the registry, and on NT
we’re accessing an .INI file, er, I
mean a .PBK file.

That’s all we’ve got time for this
month, but in the next instalment
I’ll continue ‘Rapping RAS’ with
some more enhancements to the
phonebook component, which will
include the ability to modify some
of these read-only properties such
as password, username and phone
number.

At the same time, I’ll be present-
ing the code for a connection man-
ager which automatically notifies a
Delphi application when a RAS
connection has been created or
destroyed and, who knows, we
might even have time to explore
the innards of those .PBK files.

Warning: because of tight dead-
lines (and a literally thunderstruck
modem!) so far I’ve only tested this
code under Windows 98. If you want
to start using RAS under Windows
2000 and can’t wait for next month’s
code (and possible amendments)
do proceed with caution.

Dave Jewell is a freelance consul-
tant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave as
TechEditor@itecuk.com

	But First, What’s RAS?
	Fun With Phonebooks.
	Delving Deeper
	RAS API Secrets: To Boldly Go...

